Гидрокарбонаты кальция и магния

Содержание:

Карбона́ты — соли и эфиры угольной кислоты (H2CO3). Неорганические карбонаты подразделяются на средние, или просто карбонаты, содержащие анион СО3 2− , и кислые (гидрокарбонаты или бикарбонаты), содержащие анион НСО3 − [1] .

Содержание

Свойства [ править | править код ]

Почти все карбонаты — бесцветные вещества [2] . За исключением карбонатов щелочных металлов, они неустойчивы к нагреванию — разлагаются ещё до плавления. Карбонаты двухвалентных ртути и меди, а также многих трёхвалентных металлов не существуют при нормальных условиях [3] .

Растворимость [ править | править код ]

Из средних карбонатов в воде растворимы только соли щелочных металлов, аммония и одновалентного таллия. Хуже всего растворимы карбонаты кальция, бария, стронция и свинца. Все гидрокарбонаты, наоборот, хорошо растворимы в воде [1] .

Как правило, карбонаты не образуют кристаллогидратов (исключение — карбонаты натрия и некоторых редких элементов) [3] .

Поскольку угольная кислота относится к слабым кислотам, растворы её солей вследствие гидролиза имеют щелочную реакцию, более сильную у карбонатов и более слабую у гидрокарбонатов.

Химические свойства [ править | править код ]

При нагревании гидрокарбонаты переходят в карбонаты:

[100^<circ >< ext>]Na2CO3<>+H2O<>+CO2>>>"> 2 NaHCO 3 → 100 ∘ C Na 2 CO 3 + H 2 O + CO 2 <displaystyle <ce <2NaHCO3->[100^<circ >< ext>]Na2CO3<>+H2O<>+CO2>>> [100^<circ >< ext>]Na2CO3<>+H2O<>+CO2>>>"/>

При сильном нагревании (чем активнее металл, тем выше требуемая температура [1] ) все карбонаты разлагаются на оксиды и углекислый газ:

[1000^<circ >< ext>]Na2O<>+CO2>>>"> Na 2 CO 3 → 1000 ∘ C Na 2 O + CO 2 <displaystyle <ce [1000^<circ >< ext>]Na2O<>+CO2>>> [1000^<circ >< ext>]Na2O<>+CO2>>>"/> [800^<circ >< ext>]CaO<>+CO2>>>"> CaCO 3 → 800 ∘ C CaO + CO 2 <displaystyle <ce [800^<circ >< ext>]CaO<>+CO2>>> [800^<circ >< ext>]CaO<>+CO2>>>"/>

Карбонаты реагируют с кислотами сильнее угольной (включая такие слабые, как уксусная) с выделением углекислого газа, эти реакции являются качественными реакциями на наличие карбонатов [4] :

2 NaCl + H2O + CO2 ^>>>"> Na 2 CO 3 + 2 HCl ⟶ 2 NaCl + H 2 O + CO 2 ↑ <displaystyle <ce 2 NaCl + H2O + CO2 ^>>> 2 NaCl + H2O + CO2 ^>>>"/> NaCl + H2O + CO2 ^>>>"> NaHCO 3 + HCl ⟶ NaCl + H 2 O + CO 2 ↑ <displaystyle <ce NaCl + H2O + CO2 ^>>> NaCl + H2O + CO2 ^>>>"/>

Под действием растворённого в воде углекислого газа нерастворимые карбонаты переходят в раствор, превращаясь в гидрокарбонаты (эти процессы протекают в природе и вызывают жёсткость воды) [1] :

Ca(HCO3)2>>>"> CaCO 3 + H 2 O + CO 2 ⟶ Ca ( HCO 3 ) 2 <displaystyle <ce Ca(HCO3)2>>> Ca(HCO3)2>>>"/> Fe(HCO3)2>>>"> FeCO 3 + H 2 O + CO 2 ⟶ Fe ( HCO 3 ) 2 <displaystyle <ce Fe(HCO3)2>>> Fe(HCO3)2>>>"/>

Получение [ править | править код ]

Некоторые малорастворимые в воде карбонаты могут быть получены при помощи реакций ионного обмена:

2NaCl + CaCO3v>>>"> CaCl 2 + Na 2 CO 3 ⟶ 2 NaCl + CaCO 3 ↓ <displaystyle <ce 2NaCl + CaCO3v>>> 2NaCl + CaCO3v>>>"/>

Это возможно только для тех металлов, карбонаты которых растворяются в воде хуже, чем гидроксиды, а именно кальция, стронция, лантаноидов, одновалентного серебра, двухвалентных свинца, марганца и кадмия. Ионы других металлов дают основные соли или гидроксиды [1] .

Распространение в природе [ править | править код ]

Нормальные карбонаты широко распространены в природе, например: кальцит СаСО3, доломит CaMg(CO3)2, магнезит MgCO3, сидерит FeCO3, витерит ВаСО3, баритокальцит BaCa(CO3)2 и другие. Существуют и минералы, представляющие собой основные карбонаты, например, малахит CuCO3·Cu(ОН)2.

Гидрокарбонаты натрия, кальция и магния встречаются в растворённом виде в минеральных водах, а также, в небольшой концентрации, во всех природных водах, кроме атмосферных осадков и ледников. Гидрокарбонаты кальция и магния обуславливают так называемую временную жёсткость воды. При сильном нагревании воды (выше +60 °C) гидрокарбонаты кальция и магния разлагаются на углекислый газ и малорастворимые карбонаты, которые выпадают в осадок на нагревательных элементах, дне и стенках посуды, внутренних поверхностях баков, бойлеров, труб, запорной арматуры и так далее, образуя накипь.

Читайте также:  Песчаник для аквариума своими руками

Применение [ править | править код ]

Карбонаты кальция, магния, бария и др. применяют в строительном деле, в химической промышленности, оптике и др. В технике, промышленности и быту широко применяется сода (Na2CO3 и NaHCO3): при производстве стекла, мыла, бумаги, как моющее средство, при заправке огнетушителей, в кондитерском деле. Кислые карбонаты выполняют важную физиологическую роль, являясь составной частью буферных систем крови, поддерживающих постоянство её рН.

Органические карбонаты [ править | править код ]

Сложные эфиры угольной кислоты (не путать со сложными эфирами карбоновых кислот). Средние ациклические карбонаты — бесцветные жидкости с эфирным запахом; не растворимы или труднорастворимы в воде, этаноле, диэтиламине, аммиаке, растворяются в эфире, ацетоне, бутиламине, бензиламине; образуют азеотропные смеси с водой, спиртами, тетрахлорметаном, этиленхлоргидрином, гексаном, циклогексаном. Циклические — жидкие или легкоплавкие твёрдые вещества; растворяются в воде, смешиваются с ароматическими углеводородами, спиртами, карбоновыми кислотами, ацетоном, хлороформом; не растворимы в алифатических углеводородах, сероводороде; образуют азеотропные смеси с гликолями. Наиболее употребителен диметилкарбонат (см. Карбонилирование) [5] .

Жесткость воды — одно из важнейших свойств, имеющее большое значение при водопользовании. Если в воде находятся ионы металлов, образующие с мылом нерастворимые соли жирных кислот, то в такой воде затрудняется образование пены при стирке белья или мытье рук, в результате чего возникает ощущение жесткости. Жесткость воды пагубно сказывается на трубопроводах тепловых сетей, приводя к образованию накипи. По этой причине в воду приходится добавлять специальные «смягчающие» химикаты. Жесткость воды обусловлена присутствием растворимых и малорастворимых солей-минералов, главным образом кальция (Са2+) и магния (Mg2+). Кроме указанных, к солям жесткости относят также соли стронция (Sr2+), цинка (Zn2+) и др., однако в поверхностных и грунтовых природных водах из перечисленных катионов в заметных концентрациях присутствуют только кальций и магний. Величина жесткости воды может варьироваться в широких пределах в зависимости от типа пород и почв, слагающих бассейн водосбора, а также от сезона года, погодных условий. Общая жесткость воды в озерах и реках тундры, например, составляет 0,1-0,2 мг-экв/л, а в морях, океанах, подземных водах достигает 80-100 мг-экв/л и даже больше (Мертвое море).

Из всех солей, относящихся к солям жесткости, выделяют гидрокарбонаты, сульфаты и хлориды. Содержание других растворимых солей кальция и магния в природных водах обычно очень мало. Жесткость, придаваемая воде гидрокарбонатами, называется гидрокарбонатной, или временной, т.к. гидрокарбонаты при кипячении воды (точнее, при температуре более 60 °С) разлагаются с образованием малорастворимых карбонатов. Mg(HC03)2 в природных водах встречается реже, чем Са(НСОз)2, т.к. магнезитовые породы мало распространены. Поэтому в пресных водах преобладает, так называемая, кальциевая жесткость. В природе протекают следующие обратимые химические реакции:

CaCO3 + H2O + CO2 = Са(НСОз)2

MgCO 3+ H2O + CO2 = Mg(НСОз)2

Эти уравнения имеют важное значение в природе и технике. Прямая реакция характеризует растворимость карбонатных пород, следовательно, формирование химического состава воды и эрозию земной поверхности. В присутствии растворенного в воде углекислого газа происходит растворение, или вымывание, карбонатных пород в природе. В технике это обуславливает коррозию строительных материалов. Обратная реакция – выпадение нерастворимых карбонатов кальция и магния, т.е. образование осадочных пород, имеет огромное значение в геохимии. При выходе на поверхность подземных (грунтовых) вод, обладающих значительной временной жесткостью, равновесие сдвигается в сторону образования СО2, который удаляется в атмосферу. Этот процесс приводит к разложению гидрокарбонатов и выпадению в осадок СаСОз и MgCO3. Таким путем образуются разновидности карбонатных пород, называемые известковыми туфами.

В технике протекание данной реакция приводит к выпадению карбонатной накипи на теплопередающей поверхности теплообменников, что обуславливает множество проблем. Жесткость, обусловленная хлоридами или сульфатами, называется постоянной, так как эти соли устойчивы при нагревании и кипячении воды. Суммарная жесткость воды, то есть общее содержание растворимых солей кальция и магния, получила название «общей жесткости». Ввиду того, что солями жесткости являются соли разных катионов, имеющие разную молекулярную массу, концентрация солей жесткости, или жесткость воды, измеряется в единицах эквивалентной концентрации — количеством г-экв/л или мг-экв/л. При жесткости до 4 мг-экв/л вода считается мягкой; от 4 до 8 мг-экв/л — средней жесткости; от 8 до 12 мг-экв/л — жесткой; более 12 мг-экв/л — очень жесткой (встречается и другая классификация воды по степеням жесткости).

Читайте также:  Лейкоцитоз у кошек что это такое

Допустимая величина общей жесткости для питьевой воды и источников централизованного водоснабжения составляет не более 7 мг-экв/л (в отдельных случаях до 10 мг-экв/л). Лимитирующий показатель вредности — органолептический. Поиск причинно-следственных связей между жесткостью воды и сердечно-сосудистой патологией был результативным. В ряде исследований установлена статистически достоверная, хотя и не тесная, обратная корреляционная связь между жесткостью воды и частотой инфаркта миокарда. Поскольку в других, не менее тщательно выполненных исследованиях, такой связи не было установлено, считается, что патогенетическим агентом могли быть не сами соли жесткости, а коррелирующие с ними какие-либо другие микроэлементы. Что касается других проявлений вредного влияния жестких вод, то статистическими исследованиями установлено и экспериментально подтверждено их влияние на частоту возникновения мочекаменной болезни. В этом случае не идет речи о прямой детерминированности степени жесткости воды и заболеваний мочекаменной болезнью. Решающую роль играют другие сопутствующие факторы, в частности состояние минерального обмена конкретного человека, потребляющего жесткую воду. Высокое содержание в питьевой воде солей кальция и магния является фактором риска мочекаменной болезни.

Жесткость воды. Мягкая вода. Жесткая вода. Перевод единиц (градусов) жесткости воды. Нормы жесткости воды. Таблицы значений жесткости воды.

  • жёсткой называется вода с большим содержанием солей ,
  • мягкой с малым содержанием

"Жёсткая" вода — исторически: ткань, постиранная с использованием мыла на основе жирных кислот в жёсткой воде — более жёсткая на ощупь. Этот факт объясняется, с одной стороны, отложением на ткани кальциевых и магниевых солей жирных кислот, образующихся в процессе стирки. С другой стороны, волокна ткани обладают ионообменными свойствами, и, как следствие, свойством сорбировать многовалентные катионы — на молекулярном уровне.

  • временная (карбонатная) жёсткость, — обусловлена гидрокарбонатами кальция и магния Са(НСО3)2; Mg(НСО3)2,
  • постоянная (некарбонатная) жёсткость — вызванную присутствием других солей, не выделяющихся при кипячении воды: в основном, сульфатов и хлоридов Са и Mg (CaSO4, CaCl2, MgSO4, MgCl2).

С 1 января 2014 года в России введен межгосударственный стандарт ГОСТ 31865-2012 «Вода. Единица жесткости». По новому ГОСТу жесткость выражается в градусах жесткости (°Ж). 1 °Ж соответствует концентрации щелочноземельного элемента, численно равной 1/2 его миллимоля на литр (1 °Ж = 1 мг-экв/л). В разных странах использовались (иногда используются до сих пор) различные внесистемные единицы — градусы жёсткости.

Нормы жесткости воды — в 99,99% случаев речь идет о временной жесткости, данные ВСТ:

Сравнение принятных норм жесткости воды в РФ и Европе (Германии), данные Эколайн:

Жесткость воды в некоторых городах мира — данные МВК — неизвестной достоверности 🙂

Жесткость, °Ж Кальций, мг/л Магний, мг/л
Москва 2,0-5,5 46 11
Париж 5,0-6,0 90 6
Берлин 5,0-8,8 121 12
Нью-Йорк 0,3-0,4 6 1
Сидней 0,2-1,3 15 4

Нормативные требования и рекомендации

  • Рекомендации всемирной организации здравоохранения (ВОЗ) для питьевой воды:
  • кальций – 20-80 мг/л; магний – 10-30 мг/л. Для жесткости какой-либо рекомендуемой величины не предлагается. Московская питьевая вода по данным показателям соответствует рекомендациям ВОЗ.
  • Российские нормативные документы (СанПиН 2.1.4.1074-01 и ГН 2.1.5.1315-03) для питьевой воды регламентируют:
    • кальций – норматив не установлен; магний – не более 50 мг/л; жесткость — не более 7°Ж.
    • Норматив физиологической полноценности бутилированной воды (СанПиН 2.1.4.1116-02):
      • кальций – 25-130 мг/л; магний – 5-65 мг/л; жесткость – 1,5-7°Ж.
      • По содержанию кальция и магния бутилированная вода высшей категории официально ничем не лучше воды из-под крана
      • Перевод единиц и градусов жесткости воды — в 99,99% случаев речь идет о временной жесткости:

        Перевод единиц жесткости воды в пересчете по кальцию. Вполне можно пользоваться вне зависимости от реального состава жесткости.

        °Ж
        = 1 мг-экв/л
        mmol/L ppm, mg/L dGH, °dH gpg °e, °Clark °fH
        1 русский °Ж = 1 мг-экв/л это: 1 0,5 50,05 2,804 2,924 3,511 5,005
        1 ммоль/л = mmol/L это: 2 1 100.1 5.608 5.847 7.022 10.01
        1 американский° ppmw = mg/L = American degre: 0,01998 0.009991 1 0.05603 0.05842 0.07016 0.1
        1 немецкий° dGH, °dH это: 0,3566 0.1783 17.85 1 1.043 1.252 1.785
        1 американская популярная ед.
        gpg это:
        0,342 0.171 17.12 0.9591 1 1.201 1.712
        1 английский °e, °Clark это: 0,2848 0.1424 14.25 0.7986 0.8327 1 1.425
        1 французский °fH это: 0,1998 0.09991 10 0.5603 0.5842 0.7016 1
        Пример: 1 °Ж = 50,05 ppm
        • американские градусы жесткости воды, внимание тут два пункта:
        • gpg = Grains per Gallon: 1 гран (0.0648 г) CaCO3 в 1 американском галлоне (3.785 л) воды. Поделив граммы на литры получаем: 17.12 мг/л СаСО3 — это не "американский градус", но очень употребляемая в штатах величина жесткости воды.
        • американский градус = ppmw = mg/L = American degre: 1 часть CaCO3 в 1000000 частей воды 1мг/л CaCO3
        Читайте также:  Цвет воды в водоеме
      • английские градусы жесткости воды = °e = °Clark: 1 гран (0.0648 г) в 1 английском галлоне (4.546) л воды = 14.254 мг/л CaCO3
      • французские градусы жесткости воды (°fH or °f) (fh): 1 часть CaCO3 в 100000 частей воды, или 10 мг/л CaCO3
      • немецкие градусы жесткости воды = °dH (deutsche Härte = "немецкая жесткость" может быть °dGH (общая жесткость) или °dKH (для карбонатной жёсткости)): 1 часть оксида кальция – СаО в 100000 частей воды, или 0.719 частей оксида магния – MgO в 100000 частей воды, что дает 10 мг/л СаО или 7.194 мг/л MgO
      • русский (РФ) градус жесткости воды °Ж = 1 мг-экв/л: соответствует концентрации щелочноземельного элемента, численно равной 1/2 его миллимоля на литр, что дает 50,05 мг/л CaCO3 or 20.04 мг/л Ca2+
      • ммоль/л = mmol/L: соответствует концентрации щелочноземельного элемента, численно равной 100.09 мг/л CaCO3 or 40.08 мг/л Ca2+
      • Методы устранения жесткости воды

        • Термоумягчение. Основан на кипячении воды, в результате термически нестойкие гидрокарбонаты кальция и магния разлагаются с образованием накипи:
        • Ca(HCO3)2 → CaCO3↓ + CO2 + H2O.
        • Кипячение устраняет только временную (карбонатную) жёсткость. Находит применение в быту.
        • Реагентное умягчение. Метод основан на добавлении в воду кальцинированной соды Na2CO3 или гашёной извести Ca(OH)2. При этом соли кальция и магния переходят в нерастворимые соединения и, как следствие, выпадают в осадок. Например, добавление гашёной извести приводит к переводу солей кальция в нерастворимый карбонат:
        • Ca(HCO3)2 + Ca(OH)2 → 2CaCO3↓ + 2H2O
      • Лучшим реагентом для устранения общей жесткости воды является ортофосфат натрия Na3PO4, входящий в состав большинства препаратов бытового и промышленного назначения:
        • 3Ca(HCO3)2 + 2Na3PO4 → Ca3(PO4)2↓ + 6NaHCO3
        • 3MgSO4 + 2Na3PO4 → Mg3(PO4)2↓ + 3Na2SO4
        • Ортофосфаты кальция и магния очень плохо растворимы в воде, поэтому легко отделяются механическим фильтрованием. Этот метод оправдан при относительно больших расходах воды, поскольку связан с решением ряда специфических проблем: фильтрации осадка, точной дозировки реагента.
          • Катионирование. Метод основан на использовании ионообменной гранулированной загрузки (чаще всего ионообменные смолы). Такая загрузка при контакте с водой поглощает катионы солей жёсткости (кальций и магний, железо и марганец). Взамен, в зависимости от ионной формы, отдаёт ионы натрия или водорода. Эти методы соответственно называются Na-катионирование и Н-катионирование.
          • При правильно подобранной ионообменной загрузке жёсткость воды снижается при одноступенчатом натрий-катионировании до 0,05-0,1 °Ж, при двухступенчатом — до 0,01 °Ж.
          • В промышленности с помощью ионообменных фильтров заменяют ионы кальция и магния на ионы натрия и калия, получая мягкую воду.
          • Обратный осмос. Метод основан на прохождении воды через полупроницаемые мембраны (как правило, полиамидные). Вместе с солями жёсткости удаляется и большинство других солей. Эффективность очистки может достигать 99,9 %.
          • Различают нанофильтрацию (условный диаметр отверстий мембраны равен единицам нанометров) и пикофильтрацию (условный диаметр отверстий мембраны равен единицам пикометров).
          • В качестве недостатков данного метода следует отметить:
          • — необходимость предварительной подготовки воды, подаваемой на обратноосмотическую мембрану;
          • — относительно высокая стоимость 1 л получаемой воды (дорогое оборудование, дорогие мембраны);
          • — низкую минерализацию получаемой воды (особенно при пикофильтрации). Вода становится практически дистиллированной.
          • Электродиализ. Основан на удалении из воды солей под действием электрического поля. Удаление ионов растворенных веществ происходит за счёт специальных мембран. Так же как и при использовании технологии обратного осмоса, происходит удаление и других солей, помимо ионов жёсткости.

          Добавить комментарий

          Ваш адрес email не будет опубликован. Обязательные поля помечены *